Lecture 2 Mass Spectroscopy

January 21, 2016

Please see me after class Enrollment issue

Hugo Nicolas EichnerNurbol Kaliyev

M+1 Peaks

Calculating M+1

• $M+1 = \sum$ [(abundance of heavier isotope) x (number of atoms in the empirical formula)]

• Abundance is in Table 14.2 on page 561

• Thus, for octane, C_8H_{18}

 $M + 1 = \sum ((1.11 \times 8) + (0.016 \times 18))$ = 8.88 + 0.288 = 9.17% of M

Calculated Spectrum

http://www.sisweb.com/mstools/isotope.htm

http://www.chemcalc.org/

http://fluorine.ch.man.ac.uk/research/mstool2.php

http://www.ciaaw.org/index.htm

Calculated Spectrum

http://www.sisweb.com/mstools/isotope.htm

http://www.chemcalc.org/analyse?mf=C8H18&resolution=0.1&refere nceVersion=2012 Chemistry 328N

M+2 Peaks

 Sulfur is the only other element common to organic compounds that gives a significant M + 2 peak and it is small

 $^{32}S = 95.02\%$ and $^{34}S = 4.21\%$

Result of isotope pattern calculation Formula: C1H4S1 mass % 48 100.0 49 1.9_ 50 4.5

M+2 and Statistics-Cl₂

- Possible ways of combining two Chlorines
 - 35-35 (70), 35-37 (72) and 37-37 (74)
 - Three peaks of what relative intensity?
 - assume that the probability of 35 is 0.75 and of 37 is 0.25 (close to true)

First Cl	35				35				35				37			
second Cl	35	35	35	37	35	35	35	37	35	35	35	37	35	35	35	37
total	70	70	70	72	70	70	70	72	70	70	70	72	72	72	72	74

From the table	Relative Probability					
Mass 70 = 9	9/16 = 0. 5625	/ 0.5625 = 1.00				
Mass 72 = 6	6/16 = 0.375	/ 0.5625 = .666				
Mass 74 = 1	1/16 = 0.0625	/ 0.5625 = .111				
Total = 16						

Another way.... To look at this

<u>Cl</u> 2	Probability Product		perm	utations
35,35	.75 x.75	1	0.5625	(0.5625/0.5625)x100= 100
35,37 (or 37,35)	.75 x .25	2	0.3750	(0.3750/ 0.5625)x100= 66.6
37,37	.25 x .25	1	0.0625	$(0.0625/0.5625) \times 100 =$ 11.1

What is Wrong with these things??

Using more <u>exact isotope masses</u>

35,35	.7577 x.7577	1	0.5741	100
35,37 (or 37,35)	.7577 x .2423	2	0.3671	(0.3671/0.5741)x100 = 63.9
37,37	.2423 x .2423	1	0.05871	0.05871/0.5741)x100 = 10.2

Interpreting MS

- Check the M+2 region of the spectrum The only elements to give significant M + 2 peaks are Cl and Br. If there is no large M + 2 peak then there is no Cl or Br! (remember Sit is "small)
- 2. Is the mass of the molecular ion odd or even? Apply the Nitrogen Rule:

a. if a compound has zero or an even number of nitrogen atoms, its molecular ion will appear as a even m/z value

b. If it has an odd number of nitrogen atoms, its molecular ion will appear as an odd m/z value

 To attain high efficiency of molecular ion formation and give reproducible mass spectra, it is common to use electrons with energies of approximately 70 eV (1600 kcal/mol)

• This energy is sufficient not only to dislodge one or more electrons from a molecule, but also to cause extensive fragmentation

• These fragments may be unstable as well and, in turn, break apart to even smaller fragments *Chemistry 328N*

 Fragmentation of a molecular ion, M, produces a radical and a cation. Only the cation is detected by MS

 The chemistry of ion fragmentation can be understood in terms of the formation and relative stabilities of carbocations in solution

 When fragmentation occurs to form new cations, the mode that gives the most stable cation is favored

 The probability of fragmentation to form new <u>carbocations</u> increases in the order

 $CH_3^+ < 1^\circ < 2^\circ < 3^\circ$

Alkanes

- Fragmentation tends to occur in the middle of unbranched chains rather than at the ends
- The difference in energy between allylic, benzylic, 3°, 2°, 1°, and methyl cations is much greater than the difference among comparable radicals
 - where alternative modes of fragmentation are possible, the more stable carbocation tends to form in preference to the more stable radical

Mass Spectrometry

• When the weakened bond breaks, one fragment retains the single electron (becoming neutral) and the other must therefore accept the positive charge

 How the molecule actually fragments will depend on the stabilities of the individual pieces formed

• The pentane molecular ion can split in several ways: $\begin{bmatrix} CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}]^{\dagger} \\ molecular ion \\ m/z = 72 \end{bmatrix} \xrightarrow{CH_{3}CH_{2}CH_{2}CH_{2} + CH_{3}CH_{2} \\ CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}]^{\dagger} \\ CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}^{\dagger} + CH_{3}CH_{2} \\ m/z = 57 \end{bmatrix} \xrightarrow{The carbon C2-C3 bond is broken} The carbon C1-C2 bond$

 In each bond breaking case above, the positive charge may reside on either of the fragments

 $CH_3CH_2CH_2\dot{C}H_2 + \dot{C}H_3$

m/z = 15

- The m/z values for each positive fragment can be determined
- A line representing that fragment is usually found on the mass spectrum and its abundance can be observed

Chemistry 328N

is broken

Mass Spectrometry

- Will one of these bonds break more easily?
- The relative abundances indicate higher amounts of the fragments m/z = 29 and 43, and lesser amounts of the fragments m/z = 15 and 57
 - This indicates that the C2-C3 bond is more likely to break
- In this case, the increased stability of the resulting C2-C3 radicals/ cations drives the fragmentation at this carbon bond

Mass spectrum of 2,2,4-trimethylpentane

Alkenes

- Alkenes characteristically show a strong molecular ion peak
- They cleave readily to form resonancestabilized allylic cations

 $[CH_2=CHCH_2CH_2CH_3]^{\ddagger} \longrightarrow CH_2=CHCH_2^{\dagger} + \cdot CH_2CH_3$

$$H_2C$$
 CH CH_2^{\oplus} H_2C CH_2^{\oplus} CH_2^{\oplus} CH_2^{\oplus} CH_2^{\oplus} H_2C CH_2^{\oplus} $CH_2^$

Mass spectrum of 1-butene

Alkynes

 Alkynes typically show a strong molecular ion peak

 They cleave readily to form the resonancestabilized propargyl cation or a substituted propargyl cation

HC
$$\equiv$$
 C-CH $_2^+$ \longrightarrow HC $=$ C=CH

propargyl cation

Mass spectrum of 1-pentyne

Alcohols

 A common fragmentation gives M-18 (loss of water)

 The other fragmentation produces the alkyl radical ion from the carbon bearing the OH group

Alcohols

Most stable *radical* is lost!

Please analyze for primary, secondary and tertiary alcohols.

100 -**Relative Abundance** 31 HOCH₂CH₂CH₂CH₃ 56 80 - $[CH_2 = OH]^+$ MW = 74-H₂O 60. 43 $[C_{3}H_{7}]^{+}$ $[CH_2 = CH_2]^+$ 40.

Mass spectrum of 1-butanol

Summary - vou need to know

- How mass Spectrometry measures m/z Basic Function of the Spectrometer - Base Peaks, molecular ions • Application of unit mass resolution - Calculating M+1 and M+2 (S, Cl, Br) Application of High resolution - How to use isotope tables (relative abundance) Allows differentiation between molecules with
 - identical Mw at unit mass

Summary . . . stuff you need to know

- The nitrogen rule
- Structures can be differentiated by fragmentation pattern analysis
- Fragmentation follows carbocation stability trends
 Alcohols fragment to lose most stable <u>radical</u>
- We need to know a bit about fragmengtation of : - Alkanes, alkenes, alkynes and alcohols

Molecular Spectroscopy

 Molecular spectroscopy: the study of the frequencies of electromagnetic radiation that are absorbed or emitted by substances and the correlation between these frequencies and aspects of molecular structure

The electromagnetic spectrum

Electromagnetic Radiation

- Electromagnetic radiation: light and other forms of radiant energy
- Wavelength (λ): the distance between consecutive identical points on a wave
- Frequency (v): the number of full cycles of a wave that pass a point in one second
- Hertz (Hz): the frequency unit; s⁻¹ (read "per second")

Heinrich Rudolph Hertz

Born: 22 February 1857 in Hamburg Died: 1 January 1894 in Bonn

• Hertz (Hz)

- the SI unit of frequency, equal to one cycle per second. The hertz is used to measure the rates of events that happen periodically in a fixed and definite cycle. The frequencies of radio and television waves are measured in kilohertz (kHz), megahertz (MHz), or even gigahertz (GHz), and the frequencies of light waves in terahertz (THz). The unit is named for the German physicist Heinrich Rudolf Hertz (1857-1894), who proved in 1887 that energy is transmitted through a vacuum by electromagnetic waves.

The Hertz Experiment 1887

CONCEPTUAL DESIGN

MORE DETAIL

The Hertz Experiment

